Surface enhanced fluorescence

نویسندگان

  • Emmanuel Fort
  • Samuel Grésillon
چکیده

Fluorescence is widely used in optical devices, microscopy imaging, biology, medical research and diagnosis. Improving fluorescence sensitivity, all the way to the limit of single-molecular detection needed in many applications, remains a great challenge. The technique of surface enhanced fluorescence (SEF) is based upon the design of surfaces in the vicinity of the emitter. SEF yields an overall improvement in the fluorescence detection efficiency through modification and control of the local electromagnetic environment of the emitter. Near-field coupling between the emitter and surface modes plays a crucial role in SEF. In particular, plasmonic surfaces with localized and propagating surface plasmons are efficient SEF substrates. Recent progress in tailoring surfaces at the nanometre scale extends greatly the realm of SEF applications. This review focuses on the recent advances in the different mechanisms involved in SEF, in each case highlighting the most relevant applications. (Some figures in this article are in colour only in the electronic version)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biosensing Based on Surface-Enhanced Raman Spectroscopy by Using Metal Nanoparticles

Surface-enhanced Raman spectroscopy (SERS) is a promising tool in the analytical science because it provides good selectivity and sensitivity without the labeling process required by fluorescence detection. This technique consists of locating the target analyte on nanometer range of roughed Au-nanoparticles. The presence of the metal nanoparticles provides a tremendous enhancement to the result...

متن کامل

Modification of Silica surface by Titanium sol synthesis and characterization

Hydrophobic silica titanium nanoparticles (STNPs) were successfully synthesized by the sol-gel process using liquid modification. Fourier transform infrared (FTIR) and X-ray fluorescence (XRF) studies were demonstrated the attachment of titanium on the silica surface. Titanium content enhanced the agglomeration of particles as shown in topography results. The N2 adsorption-desorption followed T...

متن کامل

Modification of Silica surface by Titanium sol synthesis and characterization

Hydrophobic silica titanium nanoparticles (STNPs) were successfully synthesized by the sol-gel process using liquid modification. Fourier transform infrared (FTIR) and X-ray fluorescence (XRF) studies were demonstrated the attachment of titanium on the silica surface. Titanium content enhanced the agglomeration of particles as shown in topography results. The N2 adsorption-desorption followed T...

متن کامل

Imaging of Surfaces by Concurrent Surface Plasmon Resonance and Surface Plasmon Resonance-Enhanced Fluorescence

Surface plasmon resonance imaging and surface plasmon induced fluorescent are sensitive tools for surface analysis. However, existing instruments in this area have provided limited capability for concurrent detection, and may be large and expensive. We demonstrate a highly cost-effective system capable of concurrent surface plasmon resonance microscopy (SPRM) and surface plasmon resonance-enhan...

متن کامل

Surface enhanced bacterial fluorescence and enumeration of bacterial adhesion.

The use of flow displacement systems for studying initial bacterial adhesion to surfaces is mostly confined to transparent substrata. The objective of this study was to investigate a method based on macroscopic fluorescence imaging to enumerate adhering fluorescent bacteria on non-transparent substrata, real-time and under flow. To this end, a stepwise protocol is described to quantify adhesion...

متن کامل

Long-range surface plasmon-enhanced fluorescence spectroscopy biosensor for ultrasensitive detection of E. coli O157:H7.

A new biosensor platform for the detection of bacterial pathogens based on long-range surface plasmon-enhanced fluorescence spectroscopy (LRSP-FS) is presented. The resonant excitation of LRSP modes provides an enhanced intensity of the electromagnetic field, which is directly translated to an increased strength of fluorescence signal measured upon the capture of target analyte at the sensor su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007